四年级《鸡兔同笼》教学设计
作为一名优秀的教育工作者,时常需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么写教学设计需要注意哪些问题呢?下面是小编为大家收集的四年级《鸡兔同笼》教学设计,仅供参考,欢迎大家阅读。
四年级《鸡兔同笼》教学设计1
【教学内容】
人教版四年级下册第九单元数学广角“鸡兔同笼”。(第103页例1)
【教学目标】
1、知识与技能
初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。
2、过程与方法
通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。
3、情感、态度与价值观
培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。
【教学重点】
用画图法和列表法解决相关的实际问题。
【教学难点】
体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
【教学准备】
课件。
【教学流程】
(一)问题引入,揭示课题。
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
问:这段话是什么意思?谁能说说?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)
(二)主动探究、合作交流、学习新知。
师:说明为了研究方便,我们先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?
师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流。
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
1、画图法:
给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。
总结:画图的方法非常便于观察、非常容易理解。
2、列表法:(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
四年级《鸡兔同笼》教学设计2
【教学内容】教科书103-104页内容及相关练习。
【教材分析】
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。解决这类问题的方法包括:列表法、假设法、方程法等。教材把这一问题安排在四年级,学生还没有学过方程,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力,体会假设法的一般性。在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
【学情分析】
“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。“列表法”是学生比较容易接受的,也就是通过有序猜测和计算得出结论,“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
【教学建议】
1、教学中要注意渗透化繁为简的思想。
2、引导学生探索解决问题的策略和方法。
3、介绍有关鸡兔同笼问题的“趣解”,既激发学习的兴趣,又可以拓宽学生的思路。
【教学目标】
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。
3、了解“鸡兔同笼”问题解决的多种有趣方法,体验问题解决方法多样化。
【教学重点】经历自主探究解决问题的过程,掌握运用列表法、假设法解决“鸡兔同笼”问题。
【教学难点】理解掌握假设法,能运用假设法解决数学问题。
【教学过程】
一、情境导入。
今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题,请看屏幕:(课件出示以下情境图)
师:你能说说这道题是什么意思吗?(说明:雉指鸡)让学生说说题意,然后出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”问题。(板书课题)
有的同学已经在计算了,说说看鸡有多少只?兔有多少只?
【设计意图】结合课件呈现的情境图谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。
二、新知探究。
(一)感受化繁为简的必要性。
刚才大家猜了好几组数据,但是我们验证后发现都不对,为什么这么多人都没有猜对呢?(数太大了)你们觉得什么情况下能够猜对?(数小一些)
那咱们就换一道数小一些的。(课件出示例1)
笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?
(二)自主尝试解决问题。
我们一起来看看在同一个笼子里的鸡和兔给我们带来了哪些数学信息?
找到题中信息:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。
在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
怎样才能确定猜测的结果对不对?(把鸡的腿和兔的腿加起来看是不是等于(把鸡的腿和兔的腿加起来看等不等于26)
这回给你们一点时间,把你猜测的数据在练习本上列个表,算一算,想一想:你算的对吗?(出示表格)
这回给你们一点时间,把你猜测的数据在练习本上算一算,想一想:你算的对吗?
(三)交流体会,掌握问题解决策略。
1、经历列表法的形成过程。
(1)经过同学们的研究,现在知道鸡和兔各有几只?
都谁和他的结果一样?你们有把握这次猜对了吗?怎么验证一下?
(2)说说你是怎样得出正确答案的?(引导学生说说解决问题的思路)
预设学生思路:
●从鸡8只,兔0只开始推算。
●从鸡0只,兔8只开始推算。
前两种情况可能做了充分预习,按照一定的顺序,列举出了所有情况,或者到得到正确答案为止。对这种有序思考的方法要给予肯定。
●直接猜出鸡有3只,兔有5只,验证后发现脚数正好是26只。
这种情况属于正好一下猜对了,教师提示不一定每次都能够猜得这么准。
●从鸡有4只,兔有4只开始推算。
这种情况猜测的次数比较少,对于数据比较大的时候适用。
●有的同学还可能发现了每增加一只兔,减少一只鸡,脚就增加2只,这样就可以一下子算出需要增加几只兔,直接找到正确答案。这正是假设法的思路。如果有同学有这一发现,教师要及时引导学生表述准确,为后面的假设法学习做好铺垫。
(3)小结收获。从刚才的列表情况看,你觉得怎样列表比较好?
(4)运用列表法解决情境图中的鸡兔同笼问题。
自主解决,交流方法并订正结果。
如果没有出现上面的第五种思路,教师小结可以提出。
小结:鸡兔的总只数不变,多一只兔子就会少一只鸡,增加两只脚;多一只鸡就会少一只兔子,减少两只脚。运用这一规律正好是我们解决这一问题的另一种方法。
2、探究假设法。
(1)问题预设:刚才大家找到了“鸡兔同笼”问题的解决办法,讨论中还发现了一种更简单的方法,如果运用这种推理方法,怎么解决呢?
(2)引导学生交流:发现假设成都是鸡或者都是兔,计算起来会更简便。
交流时重点让学生说说每一步的意思。
先假设成都是鸡,着重说说推理的过程。
同样,让学生说说,如果假设成都是兔,是什么情况?
小结收获。
(3)运用假设法解决情境图中的“鸡兔同笼”问题,再汇报交流。
【设计意图】让学生在自主尝试中找到用列表法解决“鸡兔同笼”问题的方法,引导学生有序思考,组织学生有层次地汇报和交流,让学生在这一过程中体会到:根据表中总脚数与题中数据的差,来调整数据,对假设法的探究起到了铺垫作用,同时对假设法的理解也更加深刻。
三、练习强化,深化认识。
针对性练习,完成做一做第一题。
独立完成,再集体交流订正。
四、阅读资料,丰富认识。
同学们,你们知道古人是怎样解决“鸡兔同笼”问题的吗?阅读105页的资料。
古人真是很聪明啊!今人更了不起,又发现了很多关于“鸡兔同笼”问题的趣解,你们想了解吗?介绍几种。
1、假设所有的鸡和兔子都训练有素,然后你拿着一个口哨,吹一下,所有动物收起一只脚,吹两下,收起两只脚,好了,现在鸡一屁股坐在地上了,小兔都“作揖”了,也就是还有两只脚站着,总脚数减去两倍的头的个数再除以二就是兔子的只数了。
2、假如鸡的翅膀也着地,也有四只脚,那么总脚数就是总只数乘4,减去实际的脚数,就是翅膀的数,翅膀都是鸡的,再除以2,就是鸡的只数。
五、谈话式小结。
同学们,今天你有什么收获?每种方法都明白了吗?你最喜欢哪种方法?
提示学生做题时要根据题目选择合适的方法来解决问题。
四年级《鸡兔同笼》教学设计3
一、自主学习
1、揭示课题
今天我们一起来研究数学上非常有名同时也非常有趣的数学问题鸡兔同笼问题。(板书课题)
首先我们来看这节课我们的学习目标。
2、出示学习目标
(课件出示)明确了学习目标那么到底什么是鸡兔同笼呢?请看大屏幕,课件出示例1笼子里有鸡和兔共8只,一共22条腿。鸡和兔各有几只?
这是一道典型的鸡兔同笼问题。:要求鸡和兔各有几只,咱们不妨先来猜一猜,好吗?(学生猜教师板书)
这几个答案到底有没有正确答案呢?谁有办法验证一下?
咱们班的同学就是聪明,就这么随便一猜就给猜出来了。给这个方法起个名字我们叫它什么好——猜测法(板书)在数学上解决鸡兔同笼这类问题还常用到列表法、假设法、列方程等方法。(边说边板书)
下面我想请大家通过自学教材来学习这些方法,不知道大家有没有信心?下面请参照大屏幕上出示的自学指导开始自学比赛。
3、出示自学指导(课件出示)
4、尝试应用
自学时间到请看检测题(分三组用三种不同方法解决问题)
二、合作提升
1、同组对比纠错。
2、讨论提升
(1)首先我们先来看列表法,请板演同学说思路,有不同思路可以补充。问:有比他列的数据少就找到答案的吗?是怎么想的?看老师的列法?有什么发现?(重点讨论可以从中间数据开始列)
(2)请用假设法解题的同学说思路,说出两种假设方法。不知道大家听明白了没有?从大家的眼神里我看到有些疑惑,这样我们在一起来整理整理思路。
学生说完老师转述结合课件出示图例分析两种假设方案,看两种假设方案下的到答案的式子分析每个数表示的不同意义从而总结出用总腿数的差除以单个差就得到其中一个的只数,得到的具体是那个要看假设与所得的规律。
(3)请用方程法同学说思路。教师结合学生出示课件。重点说依据(等量关系)以及设兔为未知数列方程在解方程时比较方便的原因。
三、巩固应用
1、巩固练习
同学们用三种不同的`方法都能把问题解决了,看来大家都非常聪明。这个难题是我国民间广为流传的古代名题。在大约1500年前,我国有一本数学名著《孙子算经》,书中记载了这样一道题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
这道题换用今天的话来说就是(出示)“有若干鸡和兔,它们共有35个头,94条腿。鸡和兔各有几只?”:以前就是用这道题来测小孩子是否聪明,现在我们就用刚才学到的方法来解决这道题。
(1)学生解答后汇报(实物投影)
问:多少人做对了?看来我们班上的孩子都非常聪明。有没有人用列表法解决这个问题的?为什么?引导学生发现列表法的局限性。
有多少同学用“假设全是鸡”的方法?为什么喜欢这种方法呢?(计算简便)
有多少同学用“假设全是鸡”的方法?为什么喜欢这种方法呢?(计算简便)
老师发现有几位同学还没有完成,你们是用什么方法?(图示)老师相信如果今天的时间足够的话,你们也一定能解决这道题。
2、今天我们喜欢用这种方法,在古时候古人也想了许多巧妙的方法。想不想了解一下,请看大屏幕(课件出示)古人提出了大胆的设想,他假设每只鸡都抬起一条腿做“金鸡独立”,每只兔抬起两条腿做“玉兔拜月”。现在的总腿数就变成了原来的一半,这个思路非常新颖独特,我们把它叫做“抬腿法”。
这个方法被美国数学家波利亚想象成了更为美妙的动作,他假设看到:笼中的鸡和兔都在作一种古怪的动作,每一只鸡都用一条腿站着,而每只兔子都用两条后腿站着跳舞。这个不寻常的情况下,也只用了半数的腿,这种方法被称为“玻利亚跳舞法”“砍足法”和“玻利亚跳。舞法”解题思路是一样,他们都把鸡和兔的总腿数减半,使计算更加简便。这些都是古今中外数学家们的奇思妙想,为我们今后解决数学问题提供了很好的策略。感兴趣的同学也可以在课后对这个方法进行研究。
2、拓展练习
1、“鸡兔同笼”问题传到日本,日本人称它为“龟鹤问题”。(出示)动物园里有龟和鹤共10只,共有24条腿。问:龟和鹤各有几只?问:大家想一想日本人说的“龟鹤”与中国的“鸡兔”有没有内在联系?
2、除了“龟鹤问题”与“鸡兔同笼”问题类似以外,我们在实际生活中还有很多类似的问题。比如:(出示)乘船问题问:这题是否属于“鸡兔同笼”问题
3、大小钢珠问题问:你能找到这道题与“鸡兔同笼”问题相似的地方吗?
3、小结:看来“鸡兔同笼”问题并不只解决鸡和兔,还可以是“龟鹤”“乘船问题”“大小钢珠”问题,鸡兔只是这类问题中的一个典型例子,而解决这类问题最好的方法是什么?(假设都是同一类)。如果让你给这类题重新命名,你会叫它什么问题呢?
四、总结:
今天通过跟大家的讨论交流,老师有很多新的收获,同时也相信大家也有很多收获,下面请大家对照大屏幕上我们课前定下的学习目标,回想一下这节课我们的学习过程,确信自己已经达到目标的同学请自信的骄傲的举起你的手。接下来的时间就请大家带上我们的收获来完成我们今天的作业
五、作业:
(在刚才的练习中选择任意二题完成)。