《有理数的加法》说课稿
作为一名优秀的教育工作者,通常需要准备好一份说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么大家知道正规的说课稿是怎么写的吗?以下是小编帮大家整理的《有理数的加法》说课稿,仅供参考,大家一起来看看吧。
《有理数的加法》说课稿1各位评委、老师:
大家好!今天我授课的课题是“有理数的加法(二)"。下面我就从以下三个方面——教材分析与教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析与处理
有理数的加法运算律在整个知识系统中的地位和作用是很重要的。初中阶段主要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。
根据教学大纲的要求,来确定本节课的教学目标。教学总目标为通过本节课的学习,学生能运用加法运算律简化加法运算,并能够理解加法运算律在加法运算中的作用。具体从以下三方面而言:一、 知识技能:让学生熟练掌握三个或三个以上有理数相加的运算,并能灵活运用加法的交换律和结合律使运算简便;培养学生的类比能力。二、过程方法: 培养学生的观察能力和思维能力,经历对有理数的运算,领悟解决问题应选择适当的方法。三、情感态度:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。教学重点:有理数的加法运算律的理解与掌握。教学难点:灵活运用加法运算律使运算简便。
二、教学方法和数学手段
在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是先让同学们运用已学过的知识进行有理数的加法运算,并引导学生进行自主探究,发现有理数的运算律,并进行总结。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
三、教学过程的设计
1、回顾:回顾上节课的内容—有理数的加法法则。让同学回忆之前的内容,渐渐进入学习状态。
2、引入:在引入上,让同学们运用加法法则进行计算 ,并提出问题,引导学生进行观察和思考。让学生自已动脑思考问题,使同学在解决问题的同时产生一种成就感,从而更加积极主动的学习,并且营造了良好的学习氛围。
3、授课:法则的得出重在体现知识的发生,发展,形成过程。通过同学的观察和思考,并在老师的指导下总结出有理数的运算律:加法交换律和加法结合律在有理数范围内适用。并准备一些相应的例题,主要采取讲练结合的方式,边做边总结。
4、课堂小结:归纳总结由学生完成,老师做适当的补充和引导。最后教师对本节课进行最后的说明和归纳。
5、随堂练习:在习题的配备上,我特别注意针对性,所以习题的配备虽简却精。主要让学生在练习的过程中能够对本堂课的内容理解进一步加深,同时注重调动学生的积极性,使学生在一种比较活跃的氛围中学习,并解决问题。
6、作业设计:作业的设计旨在学生对本节课的知识进行复习和巩固,主要起到延续课堂的作用,让同学们对知识的掌握更加牢固。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
《有理数的加法》说课稿21. 教学目标
1.1地位、作用
在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力.运算能力的培养主要是在初一阶段完成. 有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提.有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习.
1.2学情分析
在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂.因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障.围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力.
另一方面,课本知识的传授是符合学生的认知发展特点的.在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础.
1.3教学目标
根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:
知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用.
能力目标:通过情境的设计,培养学生的探索创新精神.在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力.
情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣.
1.4教材处理
根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算.
2. 重点、难点
2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则).
2.2教学难点:异号两数加法的实际意义及法则的归纳.
3. 教学方法与教学手段
本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力.
在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区.
4. 教学过程:
4.1创设情境,让学生的思维“动”起来
[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲.从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志.将跑道抽象为数 ……此处隐藏20965个字……的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
在整个教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
学习方法
七年级学生是智力发展的关键年龄,逻辑思维从经验型逐步向理论型发展。观察能力,记忆能力和想象能力也随着迅猛发展。他们生性好动,注意力易分散,爱发表见解,希望得到老师的表扬。所以在教学中我抓住学生的这一生理特点,一方面应用直观生动的形象幻灯图象,引发学生的兴趣,使他们的注意力始终集中在课堂上。另一方面通过小组竞赛和互举例子创造条件和机会,让学生发表见解,发挥学生学习的主动性。
本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。
采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。
教学过程
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。
《有理数的加法》说课稿13今天我将要为大家说的课题是:有理数的加减法第一课时
首先,我对本节教材进行一些分析
㈠教材结构与内容简析
本节内容在全书及章节的地位:略
㈡教学目标:
1.知识与技能:
使学生掌握有理数加法法则,并能运用法则进行计算;
2.过程与方法:
在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力
3.情感态度与价值观
通过师生合作,联系实际,激发学生学好数学的热情,感受加法无处不在,无处不有。
㈢教学重点:有理数加法法则。
㈣教学难点:异号两数相加的法则。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
㈤教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,
我在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点,应着重采用活动探究式的教学方法
㈥学法
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
1、理论:记忆加法法则;
2、实践:足球赛记分动笔动手;
3、能力:加法运算能力
㈦教学准备:课件或章前足球赛图
㈧教学设计:
一、创设情景,孕育新知
活动一:观摩足球赛:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了2球,那(3)(2)=5.①
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)(-1)=-3.②现在,请同学们说出其他可能的情形.
答:上半场赢3球,下半场输2球,全场赢球,也就是
(3)(-2)=1;③
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)(2)=-1;④
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(3)0=3;⑤
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
00=0.⑥
二、自主探究,获取新知
活动二:现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
活动三:
应用举例变式练习
例1计算下列算式的结果,并说明理由:
(1)(4)(7);(2)(-4)(-7);
(3)(4)(-7);(4)(9)(-4);
(5)(4)(-4);(6)(9)(-2);
(7)(-9)(2);(8)(-9)0;
(9)0(2);(10)00.
学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
解:(1)(-3)(-9)(两个加数同号,用加法法则的第2条计算)
=-(39)(和取负号,把绝对值相加)
=-12.
活动四:教学22页例1、例2(详见课本)
三、巩固练习,运用新知
活动五:练习:23页1.2
四、归纳小结,升华新知
同学们分组讨论,学习了哪些知识?并交流。
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
五、回归实践,再用新知
作业:31页:课外作业选做
针对学生素质的差异进行分层训练,既使学生掌握基本知识,又能够使学生获得基本技能!