二元一次方程组的解法说课稿

时间:2024-03-23 20:30:27
二元一次方程组的解法说课稿

二元一次方程组的解法说课稿

作为一位无私奉献的人民教师,时常需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。我们该怎么去写说课稿呢?下面是小编整理的二元一次方程组的解法说课稿,仅供参考,欢迎大家阅读。

二元一次方程组的解法说课稿1

各位评委老师:

大家好!今天我说课的题目是人教版七年级数学下册第八章《消元——二元一次方程组的解法》第一课时。

一、教材分析

1、教材的地位与作用:本节内容是在学生掌握了二元一次方程方程组的有关概念之后讲授的,用代入消元法解二元一次方程方程组是学生接触到的解方程组的第一种方法,消元体现了化未知为已知的重要思想。它是本章学习的重点和难点,也为解决现实问题提供了方便,同时为以后学习函数、线性方程组以及高次方程组奠定了基础。

2、教学目标:根据新课标要求以及学生的认知水平,我确定了如下了三维教学目标:

(1)知识与技能:

①会用代入法解二元一次方程组;

②能初步体会代入法解二元一次方程组的基本思想—“消元”。

(2)过程与方法:

①培养学生基本的运算技巧和能力;

②培养学生观察、比较、分析、综合能力,以及运用旧知识解决新问题的能力。

(3)情感、态度、价值观:鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生的合作交流意识与探索精神。

3、教学重点、难点:

重点:会用代入法解二元一次方程组。

难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便。探索如何用代入法将“二元”转化为“一元”的消元过程。

  二、教法与学法

根据七年级学生的思维能力较单一,教学学习活动中归纳能力较差这一特点,本节课主要采取“探究发现式”教学方法,在教学过程中,采用“问题——实践——交流合作——说理——练习”的教学流程。老师对学生在课堂中表现予以帮助与评价,鼓励学生积极主动地参与教学过程。在探索、交流中获取新知。对于学生最重要的是让他们学会学习,因此教学中主要采用了教师引导学生动手实践,自主探索与合作交流的学习方法,在学习过程中充分调动学生从事数学活动的时间和空间,让学生乐于思考、勤于动手,自主的交流与合作,在实践中掌握解二元一次方程组的方法,从面获得新知。使每一个学生都能得到充分的发展。

三、教学过程

第一环节:创设情境,导入新课

引例:篮球联赛中,化育节要到了,蓝球是初一(1)班的拳头项目,为了取得好名次,他们想在全部22场比赛中得到40分。已知每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,那么初一(1)班胜负场数分别是多少?

设置问题:

(1)问题中有几个未知数?

(2)若设胜X场,如何列出一元一次方程求解?

(3)若设胜X场,负的为Y场,列出的二元一次方程组又是什么?

(4)列出来的一元一次方程我们会解,那么又如何去解这个二元一次方程组呢?

问题(2)和(3)让两个学生上黑板列出方程并解方程(1),而问题(3)让学生列出方程组即可,最后一问有意设置矛盾,让学生处于积极思维状态,但一时又难以给出正确的答案。从而引出本节课题:消元。

(通过问题引起学生注意,同时把学生带入新课的学习情境中,刺激学生对身边发生的问题所蕴含的数学知识的兴趣,注重数学来源于生活的理念.通过创设问题情境自然地揭示新课课题,激发学生求知欲望,同时为本节课的学习打下了良好的思想基础)

第二环节:师生合作,探究新知

问题1:因为胜负场数和是22场,所列的方程除了X+Y=22外还有其他哪种形式?

在学生回答出Y=22—X和X=22—Y,教师接着提问;由这个二元一次方程组

x+y=22①

2x+y=40②

能不能得到方程2X+(22—X)=38?如何得到?提出问题后,将学生分成小组讨论,教师深入学生的讨论中,引导学生观察。例如:从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察。学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上暴露知识发生过程:(1)Y=22—X

(2)用22—X替换方程2X+Y=40中的Y,即把Y=22—X代入2X+Y=40

问题2:

(1)这时,方程组转变为什么方程?哪个未知数的值可以先求出来?从哪里求?问题解完了吗?

(2)另一个未知数的值如何求?引导学生回答以上问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。

(通过问题的提出,给学生提供从事数学活动的机会,激发学生思考,体现数学知识的形成与过程,引导学生观察、比较,分析问题,鼓励学生思考、合作与交流,有利于学生理解与掌握相关知识与方法,形成良好的数学思维习惯。

通过演示,提出问题,让学生积极地动脑、动手、动口。在教师的引导下,学生通过观察、分析、比较并积极思考解决问题的方法,有助于学生理解和掌握由二元一次方程组化为一元一次方

程的过程,从而明确消元思想——由二元化为一元——由未知化为已知。)

第三环节:师生合作,发现规律

结论:这种将“二元”转化为“一元”的思想方法,我们称为消元法(并板书课题),在消元法中我们消去一个未知数,消元是我们解方程组的关键。进而提示:我们是如何消元的?引导学生去发现,把一个方程中的某一个未知数用另一个未知数表示后代入另一个方程,消去一个未知数,这种消元法我们称之为代入消元法。

(这样归纳后,学生对解方程组的思路就会较清晰,能够顺利地实现目标,同时也会对这种方法表现极大兴趣)

第四环节:典例分析,规范步骤

让学生自学课本97页例1,规范解题步骤,然后根据云图中提出的问题积极思考明确问题答案,此环节的目的是为了培养学生良好的自学习惯,体现学生的学习活动。然后教师提出问题:

①方程组是如何变形的?还有其他变形方法吗?

②将已求出的未知数的值代入哪一个方程解出另一个未知数更简便呢?

③你能先求出的值吗?

③何检验你求出的结果是否正确?

(通过提出这一系列的问题,使学生对代入消元法解二元一次方程组的步骤更加明确。通过另一种解法,让学生体会一题多解,从而达到举一反三的目的。选择适当变形方式,使运算简便。其目的是让学生意识到代入消元法有时可消去x有时可消去y。目的是为了培养学生良好的检验习惯。)

第五环节:熟练技能,升华提高

……此处隐藏6923个字……>⑴变形:将其中一个方程的某个未知数用含有另一个未知数的式子表示。

⑵代入:将变形后的方程代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程。

⑶求解:求出一元一次方程的解。

⑷回代:将其代入到变形后的方程中,求出另一个未知数的解。

⑸结论:写出方程组的解。

3、运用新知:在得出“代入消元”解二元一次方程组后,应用“代入消元法”解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。

4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:①解二元一次方程组的主要思路是“消元”;②解二元一次方程组的一般步骤是:一变形、二代入、三求解。

5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。

二元一次方程组的解法说课稿6

各位评委、老师大家好:

我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

一、说教材

(一)地位和作用

本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们较大的发挥空间。

(二) 课程学习目标

1、会用代入法解二元一次方程组。

2、初步体会解二元一次方程组的基本思想——“消元”。

3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。

(三)教学重、难点:

用代入消元法解二元一次方程组 教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。

二、说教法

针对本节特点,在教学过程中采用自主探究、师友互助交流的教学方法,由教师提出明确问题,学生积极参思考与讨论探究、师友合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、师友合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

三、说学法

本节学生在独立思考、自主探究中学习并对老师的问题展开有师友讨论与交流。如何用代入消元法将“二元”转化“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。整个过程可以通过自主探究和师友合作来实现课程目标,此外,教学中,各个环节主要采用独学,对学,群学的方法,随堂练习时应引导学生通过自我反省小组评价来克服解题时的错误,必要时教师给予规范矫正。

四、说教学流程

(一)简单复习

学师学友面对面,学友说给学师听,什么是二元一次方程(组)?说完后两组师友展示给全班同学听

(二)自主学习:

出示学习目标:学生齐读一下,对本课学习有一个大体了解。

学生认真学习课本P91例题1上面的内容,并回答以下两个问题(电子白板出示)

1.什么叫消元思想 2.代入消元法

学习完成之后学生举手回答,教师总结。

(三)合作探究

电子白板出示问题:

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

1.师友合作交流,探究新知

在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组

学生活动:分别列出一元一次方程和二元一次方程组,

设胜的场数是x 则负的场数为22-x,列方程得 2x+(22-x)=40

设胜的场数是x,负的场数是y,列方程组得

x+y=22

2x+y=40

2.自主探究,师友讨论

那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

3.学生归纳,教师作补充:

上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

把下列方程写成用含x的式子表示y的形式

(1)2x-y=5(2)4x+3y-1=0

学生活动:尝试自主完成,教师纠正。思考:能否用含y的式子来表示x呢?

4、教师来说方法:(2)用代入法解方程组

x-y=3

3x-8y=14

思路点拨:先观察这个方程组中哪一项系数较小,发现中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入消元。

解:由变形得 X=y+3

把代入,得3(y+3)-8y=14

解这个方程,得 y=-1

把y=-1代入,得X=2

所以这个方程组的解是 X=2

y=-1

如何检验得到的结果是否正确? 学生活动:口答检验。

总结步骤:变 代 求 写

(四)小试牛刀(给你一个展示的舞台)

解二元一次方程组

1、 2、

两名同学到黑板上板演,其他同学在练习本上认真做!(教师巡视学生)

完成后,教师总结:解二元一次方程组的方法步骤:

变 代 求 写

(五)归纳总结,知识回顾

1、通过这节课的学习活动,你有什么收获?

2、你认为在运用代入法解二元一次方程组时,应注意什么问题?

(六)布置作业

作业:中午:课本 第二题1、2小题

晚上:《作业与测试》。

《二元一次方程组的解法说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式